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Abstract

The R2 statistic, when used in a regression or ANOVA context, is appealing
because it summarizes how well the model explains the data in an easy-to-
understand way. R2 statistics are also useful to gauge the effect of changing
a model. Generalizing R2 to mixed models is not obvious when there are
correlated errors, as might occur if data are georeferenced or result from a
designed experiment with blocking. Such an R2 statistic might refer only to
the explanation associated with the independent variables, or might capture
the explanatory power of the whole model. In the latter case, one might
develop an R2 statistic from Wald or likelihood ratio statistics, but these can
yield different numeric results. Example formulas for these generalizations of
R2 are given. Two simulated data sets, one based on a randomized complete
block design and the other with spatially correlated observations, demonstrate
increases in R2 as model complexity increases, the result of modeling the
covariance structure of the residuals.

1 Introduction

While statisticians tend not to have much interest in R2, researchers in other disciplines

find it useful as a way of describing how well a statistical model fits the observed data (a

measure of goodness of fit). Researchers familiar with regression and ANOVA are often

surprised when they do not see the familiar R2 statistic provided with the output from

running a mixed model. Mixed models are often suggested by consulting statisticians

and can now be estimated by many major statistics packages. A review of the literature

reveals many formulas for R2 statistics that might be adapted for mixed models. All yield

the same value for ordinary regression and ANOVA (assuming an intercept term is in

the model) but involve different philosophies or assumptions about what an R2 statistic

should represent. When these different philosophies are applied to mixed models, for the

same data and mixed model, different R2 values can result.



Kv̊alseth (1985) proposed the following requirements for a general R2:

1. R2 must possess utility as a measure of goodness of fit and have an intuitively

reasonable interpretation,

2. R2 ought to be dimensionless,

3. 0 ≤ R2 ≤ 1, where R2 = 1 corresponds to a perfect fit, and R2 ≥ 0 for any

reasonable model specification,

4. Applicable to (a) any type of model, (b) whether effects are fixed or random, and

(c) regardless of the statistical properties of the model variables,

5. R2 should not be confined to any specific model-fitting technique,

6. Values for different models fit to the same data set are directly comparable,

7. Generally compatible with other acceptable measures of fit, and

8. Positive and negative residuals weighted equally.

One could add additional properties, such as those proposed by Cameron and Windmeijer

(1996) for count data,

1. R2 does not decrease as regressors are added,

2. R2 based on the residual SS (sum of squares) coincides with R2 based on the ex-

plained SS,

3. There is a correspondence between R2 and a significance test on all slope parameters

and between changes in R2 as regressors are added and significance tests, and

4. R2 has an interpretation in terms of information content of the data.

There are many formulas that produce the familiar R2 for regression and ANOVA

(Kv̊alseth, 1985), probably the most commonly seen is 1 − SSE/SST, where SSE is the

sum of squares of the residuals (error) and SST is the sum of squares of the mean adjusted

observations. In the following sections I discuss some of the ways R2 may be extended

into the mixed models framework. Yu (2003) discusses several R2 measures for a specific

type of mixed model commonly used in panel studies (hierarchical models with clustered

observations). A Bayesian R2 for these same kinds of models is described by Gelman and

Pardoe (2004). This paper differs from others in extending the concept of R2 to mixed

models with random (block) effects and spatially correlated residuals, the kinds of models

commonly used by researchers in designed experiments.



2 R2 for mixed models

To produce a consistent R2 statistic in the mixed models framework, additional properties

would have to be agreed upon. In particular, whether one perceives random effects and

autocorrelated errors as noise or as an important part of the model will greatly affect

one’s choice of R2. Different problems necessarily emphasize the importance of different

parts of a model—this is a fundamental part of modeling a process and cannot be resolved

mathematically. Thus, there can be no general definition of R2 for mixed models that

will cover every model, which is problematic for software developers.

One can think of random effects and autocorrelated errors as noise, that is, effects

that mask or distort the true relationship between the predictors and the dependent

variable. In this case, one wants an R2 where these effects have been “removed”. This can

be accomplished by conditioning on them, so that this R2 measures a “pure” between-

variables relationship. Pierce (1979), in a time series context, suggested the following

form: R2
∗ = (σ2

y|y∗
− σ2

y|y∗,x)/σ
2
y|y∗

, where y∗ denotes past y (note: the ordinary R2 in

regression can be written as (σ2
y − σ2

y|x)/σ
2
y). Then, σ2

y|y∗
represents the average variance

of an observation conditioned on its past and σ2
y|y∗,x represents the average variance of

an observation conditioned on both its past and on explanatory variables in the model.

If one can calculate SSy|y∗ , where SS represents a sum of squares, then there is an easy

way to go from R2 calculated the traditional way (ignoring the autocorrelated errors) to

R2
∗, as R2

∗ = 1 − V (1 − R2), where V = SSy/SSy|y∗ . Nelson (1976) gives examples of how

to estimate SSy|y∗ for some time series models (these could be adapted for geostatistical

data or for random effects). Note that, for random effects, one cannot simply subtract

the sum of squares due to random effects from both SST and SSM (sum of squares of the

model) and get R2
∗ = SSMadj/SSTadj, since that would be treating the random effects as

if they were fixed.

While obtaining a “between-variables only” R2 is reasonable for some problems, most

of the researchers we work with want to know how R2 changes if one allows for auto-

correlated residuals or random effects, or the difference between an R2 when blocks are

considered as fixed effects rather than as random effects. They are more interested in R2

as a measure of goodness of fit of the model to the data than as a “pure” measure of

between-variables relationship.

Again, there are several ways such an R2 can be constructed. Magee (1990) suggested

generalized R2 measures based on Wald and likelihood ratio test statistics. One could

also base them on score statistics (see Jaffrézic, et al., 2003, and Smyth, 2003, for using

the score test to construct a goodness-of-fit measure) and possibly other functions of the



data. Buse (1973) derives a modified R2 from a Wald statistic as

R2
W = 1 −

û′V−1û

(Y − Ȳ)′V−1(Y − Ȳ)
,

where û = Y − Ŷ, Y is the vector of observations, Ŷ is the vector of in-sample predictions

from the model, V is the variance-covariance matrix of the residuals, and Ȳ= ȳ1, where

ȳ is the mean of the data. A likelihood ratio test R2 (Magee, 1990) is

R2
LR = 1 − exp(−

2

n
(logLM − logL0)),

where logLM is the log-likelihood of the model of interest (which would include fixed and

random effects and a correlated error structure), logL0 is the log-likelihood of the intercept-

only model, and n is the number of observations. These two different R2 statistics do not

produce identical values for a mixed model, though they do for ordinary regression; other

formulas developed from other perspectives would undoubtably also produce different

values. Thus, there is an element of choice and no guidance from the literature as to

which is the best for a given situation.

The likelihood ratio R2 is attractive for a number of reasons. For one, it is compu-

tationally easy since most mixed models software outputs the maximum log-likelihood

of the model. Since it is based on likelihoods, there is a direct relationship with the

Kullback-Liebler distance, “information”, and information gain, IG = − log(1 − R2) (see

Kent, 1983). Third, it can be used when generalizing ordinary regression in other ways,

so it provides a coherent strategy for producing an R2 statistic, given that there is an

intercept model, and that maximum log-likelihoods can be calculated for the intercept

model and the model of interest. Nagelkerke’s (1991) procedure for adjusting R2 in cases

where the maximum attainable R2 is less than one could also be incorporated (e.g., for

some generalized linear mixed models). The “unified” approach for an R2 given by Huh,

et al. (1991), is also related to a likelihood test statistic (they describe it as a likelihood

distance measure), but is does not reduce to the usual R2 in ordinary regression.

Mixed models software provides other measures that are useful for evaluating and

comparing models, such as varioius information criteria (e.g., AIC). Information criteria

are used to compare models based on the principle of parsimony (the smallest number of

parameters to adequately capture the structure of the data). Using, say, AIC, the best

fitting model will be neither overparameterized nor underparameterized. In contrast, R2

will increase (or, at least, not decrease) as parameters are added. While information

criteria can help decide which candidate model is best, they do not give one an idea of

whether the model explains most or explains little of the variation in the dependendent

variable. The best model in a group of models, judged using AIC, may have a low R2,



though presumably others in that group would also have low R2 values. The generalized

χ2, also output by some software packages, is a measure of model adequacy based on

the distribution of the residuals, and is useful for certain generalized linear models. The

generalized χ2 provides different information about the model than either information

criteria or the R2 statistic.

3 Examples

Two examples will be discussed, both developed from generated data, allowing the com-

parison of R2
W and R2

LR with different models. The first example is a random coefficients

model in a randomized complete block design. The data were generated from the model

yijk = β0 + τi + γj + αjδijk + εijk, where i indexes the three treatments, j indexes the four

blocks (var(γ) = 4), δijk represents the covariate value for observation ijk (var(α) = 1,

and k = 1, 2), and εijk is normally distributed error (var(ε) = 1). Figure 1 gives a real-

ization of data generated from this model, where the relationship between the covariate

and Y is depicted for each block. Examination of this figure reveals that the treatment

effect is small (true values were 1, 2, 3), that the block effect is modest (there is some

difference among the block means), and the effect of the covariate differs among blocks

(slope parameters for the covariates are positive in the first three blocks but close to zero

in block 4).

The number of parameters, the maximum log-likelihood, R2
W and R2

LR estimated for

various models are given in Table 1. The maximum log-likelihood can be used to calculate

AIC or other information criteria (e.g., AIC is −2 × maximum log-likelihood + 2 × the

number of parameters in the model). The maximum log-likelihoods were calculated using

the nlme package (Pinheiro and Bates, 2000) in the statistical software program, R (Ihaka

and Gentleman, 1996, freely available at www.r-project.org); these are standard log-

likelihood values (not REML estimates, which adjust for uncertainly due to estimating

fixed effects; the REML function does not produce the usual R2 if used for an ordinary

regression model).

As expected, models with more estimated parameters have larger R2 values. The

intercept only model has two parameters, a mean and a variance, and R2 = 0 using

either of the expressions for calculating R2 given above. The model that includes the

fixed treatment effect (two additional parameters) produces only a small increase in the

log-likelihood value, and an R2 of only 0.07. However, including the block effect as a

fixed effect (three additional parameters) greatly improves the fit; R2 increases to 0.54.

Considering block as a random effect (following the way the data were generated) yields

a smaller increase in the log-likelihood and R2 values. This is expected, since only one



(variance) parameter is used to estimate the block effect, and estimates are shrunk towards

zero and away from their fixed estimates. Note that R2
LR is not as high as R2

W . Since

these two R2 values are based on different premises, there is no reason to expect them to

yield the same value.

Similar results occur when comparing full models, all effects fixed (the model that

includes the block × covariate interaction) versus random block and covariate effects (the

latter matching the model generating the data). The R2 value for the all effects fixed

model (11 parameters) exceeds either of the R2 values for the corresponding mixed model

(seven parameters).

One might conclude, based on R2 values, that the all fixed effects model “fits” the

data better than the all random effects model. While, in the R2 sense, this is true, the

assumptions underlying the models differ, so a comparison is not enlightening. The model

with all effects fixed assumes that the inference space is only to those blocks used in the

model, not a population of blocks from which a sample of blocks was drawn. Under

each set of assumptions, the log likelihood was maximized, so parameter estimates are

“optimal” for their respective models. A better comparison for the all random effects

model would be with the model containing no block effect but just the covariate, so that

one can see the improvement by adding in a block effect. We see that the five parameter

model (treatment and covariate) produces an R2 of 0.36, adding in the block effect as

two variances (seven parameters) produces an R2
LR of 0.84 and an R2

W of 0.93, a large

improvement.

The second example is based on data generated with spatially autocorrelated residuals,

where the correlation is given by ρ = exp(−di,j/2), where di,j is the distance between

an observaton at location i and an observation at location j. There are two levels, so

this data set could represent observations on some characteristic of two different species

distributed in a field with observations near each other more similar than those further

apart, perhaps due to unmeasured local microhabitat or soil conditions. The data are

displayed in Fig. 2, the two levels (species) are represented by different symbols, and the

magnitude of the observed characteristic is represented by topographic colors, blue the

lowest values, green to yellow, middle values, and brown the highest values. That the

observations are autocorrelated can be readily seen by examining the semivariograms for

each level (Fig. 3).

Table 2 gives maximum log-likelihood and R2
LR values for an intercept only model (two

parameters), a model that also includes a level (species) effect (three parameters), and a

model that additionally allows for autocorrelated residuals (four parameters). Allowing

for autocorrelated residuals (one additional parameter) increases R2
LR by about 16%. Note

that, while we are saying the model captures more information about the data, at the



same time we are saying there is less information in the data because observations are not

independent.

4 Summary and Conclusions

There are various R2’s that can be developed for mixed models, all produce the same

value for ordinary regression, so would satisfy the properties set forth by Kv̊alseth (1985)

and Cameron and Windmeijer (1996). An R2 based on the likelihood ratio test is easy

to calculate from standard mixed models output and has a connection to information

theory. Examples were shown demonstrating increases in R2 when adding random effects

or correlated errors to the model. Because philosophies about what R2 should measure

can differ in the mixed models framework, there will be no universally acceptable R2 value

for a mixed model. However, R2
LR is easy to calculate using generally available statistical

software, so it can serve as a measure of goodness of fit of the model to the data.

5 Acknowledgments

I thank Mary Camp, Bryan Vinyard, and an anonymous referee for critically reviewing

the manuscript.

6 References

Buse, A. 1973. Goodness of fit in generalized least squares estimation. Amer. Stat. 27,

106–108.

Cameron, C. and F.A.G. Windmeijer. 1996. R-squared measures of count data regression

models with applications to health-care utilization. J. Bus. Econ. Stat. 14, 209–220.

Gelman, A. and I. Pardoe. 2004. Bayesian measures of explained variance and pooling

in multilevel (hierarchicial) models. www.stat.columbia.edu/∼gelman. 21 pp.

Huh, M.H., J.H. Lee, J.W. Jung. 1991. Unified approach to coefficient of determination

R2 using likelihood distance. Korean J. Applied Stat. 4, 117-127. (In Korean.)

Ihaki, R., and R. Gentleman. 1996. R: A language for data analysis and graphics. J.

Comput. Graph. Stat. 5, 299–314.
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7 Tables

Table 1. Maximum log-likelihood, and R2
LR and R2

W values for various models for data

generated from a randomized complete block design with a covariate (see text for details),

(f) = fixed effect, (r) = random effect.

model num. parms. log-likelihood R2
LR R2

W

intercept only 2 -64.45 0 0

trt 4 -63.55 0.07 0.07

trt + cov (f) 5 -59.10 0.36 0.36

trt + block (r) 5 -60.60 0.27 0.32

trt + block (f) 7 -55.18 0.54 0.54

trt + block (r) + cov (r) 7 -42.74 0.84 0.93

trt + block (f) + cov (f) 8 -40.15 0.87 0.87

trt + block (f) + cov (f) + block×cov (f) 11 -24.63 0.96 0.96



Table 2. Log-likelihood and R2
LR values for models for data generated with two levels and

spatially autocorrelated residuals (see text for details).

model log-likelihood R2
LR

intercept only -495.94 0

level -389.68 0.51

level + correlated residuals -225.27 0.67



8 Figures
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Figure 1. Relationship between the dependent variable and covariate for each block for

the simulated data of Example 1. The three treatments are distinguished by symbol and

color.
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Figure 2. Spatial distribution of simulated data of Example 2. The two levels (species)

are distinguished by symbol type. Magnitude of the response variable is indicated by

topographic color, low is blue, medium is green to yellow, high is brown.
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Figure 3. Semivariogram for each of the levels (species) of Example 2, depicting the nature

of the spatial autocorrelation.


